The Normal Vibrations of Some Silicon Tetrahalides as Calculated by Urey-Bradley Field

By Yuzo KAKIUTI

(Received November 27, 1952)

Assuming the Urey-Bradley field, Simanouti calculated the normal frequencies of many polyatomic molecules which are in good agreement with the observed values. (1) (2) (3) In the present paper, the normal frequencies of some silicon tetrahalides were calculated using the similar type of potential field, according to which the potential energy of a molecule can be expressed as follows,

$$\begin{split} V &= \sum_{i} \left[K'_{i} r_{i} \Delta r_{i} + \frac{1}{2} K_{i} (\Delta r_{i})^{2} \right] \\ &+ \sum_{i < j} \left[H'_{ij} r^{2}_{ij} \Delta \alpha_{i} + \frac{1}{2} H_{ij} (r_{i} \Delta \alpha_{ij})^{2} \right] \\ &+ \sum_{i < j} \left[F'_{ij} q_{i} \Delta q_{ij} + \frac{1}{2} F_{ij} (\Delta q_{ij})^{2} \right], \end{split}$$

where the notations same as those given in reference (1) are used. K, H and F denote stretching, bending and repulsive force constants, respectively. The values of these force constants were determined so as to give the best fit with the observed frequencies of SiCl₄, SiBr₄ and SiI₄, taking the equilibrium bond distances Si-Cl, Si-Br and Si-I as 2.01, 2.15 and 2.43 A, respectively (see Table 1). Here

Table 1
Values of the force constants $(K, H, F, F' \times 10^{-5} \text{ dyne/cm})$ and $\kappa \times 10^{11} \text{ dyne.cm})$

$SiCl_4$			$\mathrm{SiBr_{4}}$			Si 1,		
K				(Br) =				
H	(Cl) =	0.059	H	(Br) =	0.051	H	(I) =	0.044
\boldsymbol{F}	(C]) =	0.29	F	(Br) =	0.23	F	(I) =	0.16
F'	(Cl) = -	-0.029	F'	(Br) = -	-0.023	F'	(I) = -	-0.016
κ	(Ol) =	0.21	κ	(Br) =	0.18	κ	(I) =	0.14

The κ 's denote the intramolecular tensions.

we assumed that F' value is about—10 % of F value.⁽⁴⁾ Some of these values agree very well with those given in reference (3). Using

Table 2
Calculated vs. observed frequencies (cm⁻¹)

Calculat	tea	vs. observed	requencies	(cm	.),
Class		Obs.(5)	Calc.	Diff.	
(A	1	424	424	0	
SiCl. E	C	150	15 0	0	
51014	٠.	[221	220	-0.	$.5^{\cdot}$
. (1	2	1610	608	-0.	3.
(A	1	249	250	+0.	
SiBr. E	3	90	91	+1.	
	2	(137	138	+0.7	
(1487	488	+0.	2^{\cdot}
(A	1	168	168	0	
SiI.	3	63	63	0	
5114	¹⁴) _E	∫ 94	94	0	
(1	2	1405	405	0	
		(159	159	0	
1.	$\mathbf{A_1}$	288	291	+1.	0
SiClBr		U 579	584	+0.	9.
SICIDI3	E	(¹⁰¹	102	+1.	0-
		{ 173	162	-6.	4
(l ₄₉₈	491	-1.	4
((111	111	0	
1	A_1	182	181	-0.	$5 \cdot$
ł		326	329	+0.	9,
1		ι ₅₆₃	565	+0.	4
SiCl ₂ Br ₂	B_1 B_2	§ 191 (?)	187	-2.	1
- 1		605	604	-0.	2^{\cdot}
- 1		174	174	0	
- 1		508	494	-2.	8.
Į	$\mathbf{A_2}$	122	123	+0.	8
,		(191	187	-2.	1
[4	A_1	368	370	+0.	
CLCI TO		545	540	-0.	9
SiCl ₃ Br		(135	134	-0.	7
1	\mathbf{E}	205	206	+0.	5.
(610	606	-0.	7
		(114	117	+2.	6
ſ A	1	220	228	+3.	в
a.a		l ₅₅₇	570	+2.3	
SiClI ₃		73	74	+1.	
E		134	138	+3.0	
Į		(₄₁₁	436	+6.	1

⁽⁵⁾ M. L. Delwaulle, J. Phys. Chem., 56, 355 (1952).

⁽¹⁾ T. Simanouti, J. Chem. Phys., 17, 245 (1949).

⁽²⁾ T. Simanouti, ibid., 17, 734 (1949).

⁽³⁾ T. Simanouti, ibid., 17, 848 (1949).
(4) T. Simanouti, to be published shortly.

Class Obs.(5)		Calc.	Diff. %
((83	83	0
$\mathbf{A_1}$	J 160	161	+0.6
l,	276	281	+1.8
1	(₅₃₈	544	+1.1
_	∫ ?	165	
$_{\mathrm{SiCl_{2}I_{2}}}$	(589	599	+1.7
- 1	$(^{149}$	150	+0.7
${f B_2}$	$\begin{pmatrix} 418 \\ 436 \end{pmatrix}$	421	
(A_2)	111	114	+2.7
<i>C</i> .	(169	165	-2.4
A	{ 333	333	0
$\operatorname{SiCl_3I}$	l 519	511	-1.5
	(123	125	+1.6
E	197	199	+1.0
((600	603	+0.5

the common values of these force constants, the normal frequencies of $SiCl_4$, $SiBr_4$, SiI_4 , $SiCl_3Br$, $SiCl_2Br_2$, $SiClBr_3$, $SiCl_2I_2$ and $SiClI_3$ were calculated in the same way as in reference (1), where we assumed that the force constants relating to both unlike halogen atoms X and Y have the average values of two force constants which are concerned with each of them. The results are shown in Table 2. The calculated frequencies are in general in good agreement with the observed values.

The writer wishes to express his sincere thanks to Prof. S. Mizushima at Tokyo Univ. and Dr. T. Simanouti for their kind guidance.

Faculty of Science, St. Paul's University (Rikkyo Daigaku), Tokyo